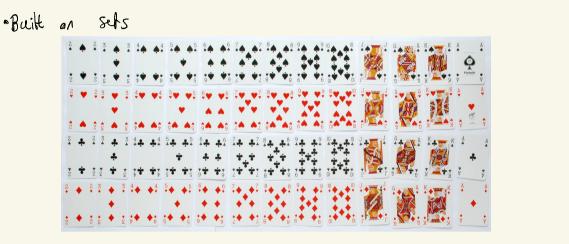
MATH-235 Probability and Statistics With Mats Stensrud

Lecture 1

- Plan:
 Intro/Info
 Naire definition of probability
 Country
 Story proofs

Fernat 1600's

Probability



Experiment is performed.

A sample space is the set of all possible outrones of

an experiment (S)

· An event is a subset of the Sample space.

(A or B).

- Sis sample spece, then thewests A,B = S.
- · AUB is the event that A or B occurred
- . ANB is the event that both A and Boccor.
- · Complement A is the event that occurs if and only if
- A does not occur.
- · (AUB) = ACOBC and (ADB) = ACUBC (De Morgan's law).

Example cards

· Pich a card

·S is the set of 52 caps

· Consider the Events?

A: cad is an ace

B: black suit

D: Diamond

H: Heart

AnH: Ace of Heart

ANB: Ace of Spades, Ace of Clubs

AUDUH: red cord or ace
(AUB)c: red non-ree

52

of events 252

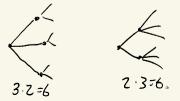
Naive def of probability

Multiplication rule for counting

r experiments.

Each has he outcomes.

overall there are ninz...hr possible outcomes



Full house

3 cards of one rank, 2 cards of another rank.

$$\frac{13\binom{4}{3}\cdot12\binom{4}{2}}{\binom{52}{5}}=\frac{1A}{|S|}$$

$$\binom{lo}{5}/2$$
.

Pick k times from a objects; order doesn't matter, with replacement n boxes (n+k-1) ways Nof h=0: =) $\binom{h-1}{0}=1$. # positions n+le-1 $k=1: \Rightarrow \binom{n}{1}=k$

Q: How many ways can we "organise" the separators (or balls)

N=2 =) $\begin{pmatrix} k+1 \\ L \end{pmatrix} = \begin{pmatrix} k+1 \\ 1 \end{pmatrix} = k+1$. $\begin{pmatrix} h+k-1 \\ k \end{pmatrix} = \begin{pmatrix} h+k-1 \\ h-1 \end{pmatrix}$

Stery proof

- · Proof by interpretation
- · Eg. for country, count in different ways
- · Benefit: don't need to do techiois algebra.

Ex choosing the complement
for non-neg. integers
$$k \le N$$
, $\binom{n}{k} = \binom{n}{n-k}$

$$\binom{n}{k} k = n \binom{n-1}{k-1}$$

$$\begin{pmatrix} \mathbf{M} + \mathbf{N} \\ \mathbf{k} \end{pmatrix} = \sum_{j=0}^{k} \begin{pmatrix} \mathbf{M} \\ j \end{pmatrix} \begin{pmatrix} \mathbf{N} \\ \mathbf{k} - j \end{pmatrix}$$

Non-naive Definition of Probability

We need two objects:

S, the sample space. P, a function whose argument is an event ASS, returns $P(A) \in [0,1]$ as output.

Two axioms:

(1)
$$P(\emptyset) = 0$$
, $P(S) = 1$
(2) $P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n)$ if A_1, A_2, \dots are disjoint (multiply exclusive)

· Conditional prob.

$$P(no \text{ match}) = \frac{-365 \cdot 364 \cdot 363 \cdot \cdots \cdot (365 - 2k+1)}{365^{k}}$$

if h=100.

P(meleh) = { 50.7 299.9

 $\begin{pmatrix} k \\ z \end{pmatrix} = \frac{k(k-1)}{z}$

£=23 =) 23.27 = 253.

P is the probability, a non-negative real number

(1)
$$P(\varnothing) = 0$$
, $P(S) = 1$.
(2) $P(\bigcup_{n=1}^{\infty} A_n) = \stackrel{\circ}{Z} P(A_n)$ if A_1, A_2, \dots are disjoint.

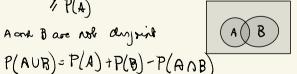
$$\frac{P \text{ reperties}}{(1) \quad P(A^c) = |-P(A)|} \quad P \text{ res}: \quad I = P(S) = P(A \cup A^c) = P(A) + P(A^c) \qquad \text{arisinit}: \quad A \cap A^c = \emptyset$$

(2) A is contained in B,
$$A \subseteq B$$

 $P(A) \le P(B)$

Proof:
$$B = A \cup (B \cap A^{c})$$

$$P(B) = P(A) + P(B \cap A^2)$$
 by exion 2.



(3) If A one B are not desprint

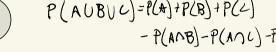
Proof:
$$P(AUB) - P(AU(B)A^c) = P(A) + P(B)A^c = P(A) + P(B) - P(A)B$$

Note that (*) P(B) = P(B \cap A) + P(B \cap A^c)

More generally, Exclusion-inclusion:

 $= \underbrace{Z}_{A=1}^{\infty} P(A_i) - \underbrace{Z}_{1 \leq i < j \leq N} P(A_i \cap A_j) + \underbrace{Z}_{1 \leq i < j \leq k \leq N} P(A_i \cap A_j \cap A_k)$

- + (-1) P(A, MAZD.... MAn).



A; is the event that j'th card matches. our probability of interest: P(A, UAZU... UAn).

$$P(A_{i}) = \frac{1}{n} \cdot P(A_{1} \cap A_{2}) = \frac{(n-2)!}{n!} = \frac{1}{n(n-1)} \cdot P(A_{2} \cap A_{2}) = \frac{(n-2)!}{n!} = \frac{1}{n!} \cdot P(A_{2} \cap A_{2}) = \frac{1}{n!} \cdot P(A_{2}$$

$$(4) = \frac{1}{4} \qquad \text{If }$$

$$P(A_1 \cap A_2 \cap \dots \cap A_k) = \frac{(n-k)!}{n!} = \frac{1}{n(n-1)(n-2)\cdots(n-k+1)}$$

 $P(A_1 \cup A_2 \cup ... \cup A_n) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \leq i \leq j \leq n} P(A_i \cap A_j) + \dots$

 $= \frac{1}{1 - \frac{h(h-1)}{2} \cdot \frac{1}{h(h-1)} + \frac{h(h-1)(h-2)}{3!} \cdot \frac{1}{h(h-1)(h-2)} - \frac{1}{2! + \frac{1}{3!} \cdot \frac{1}{4!} + \dots + \frac{h+1}{2!} \cdot \frac{1}{h!}}{n!}$

Independence

· Intuition: We want to say that one event does not give information about another event.

A ond B are independent of P(A,B) := P(A \cap B) = P(A) . P(B)

P(ANBAL) = P(A)P(B)P(L) Generally, A., Az, ..., An ore independent if for every subset of there events $P\left(\bigcap_{i \in I} A_i\right) = \int_{A_i} P(A_i)$

Ex: Newton-Pepys problem.

$$P(A) = 1 - P(A^{c}) = 1 - \left(\frac{5}{6}\right)^{6} = 0.665$$

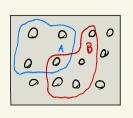
$$P(B) = 1 - \binom{12}{6} \left(\frac{5}{6}\right)^{12} - \binom{12}{6} \left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^{11} = 0.619.$$

$$P(C) = 1 - \binom{18}{6} \left(\frac{5}{6}\right)^{18} - \binom{18}{6} \left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^{17} - \binom{18}{6} \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{16} = 0.517$$

(c) At least three six's with to duce
$$P(A) = 1 - P(A^{c}) = 1 - \left(\frac{5}{6}\right)^{6} = 0.665$$

$$P(B) = 1 - \binom{12}{6} \left(\frac{5}{6}\right)^{12} - \binom{12}{1} \left(\frac{1}{6}\right) \left(\frac{5}{6}\right)^{11} = 0.619.$$

Conditioned presentily



Def: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ if P(B) > 0.

infinitely many times?

Ex: Pick stones from B.

Check how many times A occurred.

Compute the fraction

Thm:
$$P(A,B)$$

= $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$
+ $P(A_1 \cap A_2 \dots \cap A_n) = P(A_1) P(A_2|A_1) P(A_3|A_1 \cap A_2)$
--- $P(A_n|A_1 \cap \dots \cap A_{n-1})$

Parlitioning is useful.

Create Ai, Az,... An to be disjoint.

P(B) = P(B) A) + P(B) ...

+ P(B \cap An)
= P(B \cap A) P(A) + \cdots
P(B \cap An) P(An) "Law of fotal probability"

echure 3

Plan

· Conditional probability ("[")
· Conditional independence

· Examples: · Monty flall · SIMPSON'S

Exemple

Ger two couds from std. deck

- (1) P(both aces | houre one ace)

(2) P(both aus lace of spales)

Case

P(have one are)

P(both aces 1 have one ace)

$$\frac{3}{5!} \approx 1$$

Example (Disease testing)

- - · Disease effects 1% of the pop.
 · Test positive means "disease directed".
 - · Company song 95% accurate.
 - . D is event that a patient has a disease
 - · T patient texts positive.

$$P(D|T) = \frac{P(T|D)P(D)}{P(T)} = \frac{P(T|D)P(D)}{P(T|D)P(D) + P(T|D)P(D)} = \frac{0.95 \cdot 0.01}{0.95 \cdot 0.01 + 0.05 \cdot 0.99} = \frac{0.16}{0.95 \cdot 0.01 + 0.05 \cdot 0.99}$$

Caution

* Distinguish P(A|B) and P(B|A). Prosecutor's fallacy.

Ex: Sally Clark. Suppose SIDS affects 8500

Noive calculation: 1 8500 \$ 72.106 · Fetal Alcohol syndrom (FAS)

· A: Event having FAS

· B: Drinking in first trimester P(B)A).

of confuse P(A) and P(A/B) P(A/A)=1.
"Prior" "uplated", "posterior"

· Conditional independence US independence

Dd Condehoral undependence.

Example Genelis/

Events A,B are conditionally independent given C if

$$P(A,B|C) = P(A|C) P(B|C)$$
.

P(A,B) = P(A)P(B)

Example Chess / A: Event I win fint game
B: Event I Win second game

· & event that a person has KRAS.

· S eval that a person snokes

· C event that a person has concer.

C: Eval that Geller is strong

P(ANB)=P(A)P(BlA) by P(BlA) #P(B)

but P(B(A) ≠P(B)

Ex Monly Hall 3 dows. 2 hove goals behind them I have a car.

Bane: You choose a loor

- · Monty Hall opens another door, shows a goat.
- · Should we switch?

$$P(S) = P(S(D_1)) \frac{1}{3} + P(S(D_2)) \frac{1}{3} + P(S(D_3)) \frac{1}{3}$$

EX Simpson's boundax

A: Successful sugery B: Beathie did the surgry

C: Heard transplant.

Lecture 4 When is a varable? Plan · Randon variables X+Z=9 · PMF, LDF X = 7 · Bernoulli, Binomial, Hypergeometric

Event X=Z

P(x=2) = 0.25 P(x=1) = 0.5 SHTUTH?

Def Probability MASS function (PMF) of random variable.

(ONS, Der a discrete RV X W, the poss, like values

Q, az, ..., an or a, az...

The park is with P(X = ai) = P: lor all

The PMF is just P(X=aj)=Pj for all j and we need bhat

Del Cumulahire Diotribuehon Function (OF).

Consider RUX, $X \leq x$.

Define $F(x) = P(X \leq x)$

(1) P: 70

Ex: +wo c-ins, P(x61)=0.75.

Del. Bernoulli, destribution A RU x has a Bern. distribution if X has only two possible values 0 and 1, and if P(X=1)=p and P(X=0)=1-p, where 13,p30 Del Brownel (n,p) distribution The distribution of # successes in n independent Bern(p) trials, Called Biron (n,p), while has distribution (PMF): $P\left(X=k\right)=\binom{n}{k}p^{k}\left(1-p\right)^{n-k}/17p70.$

Interprebation of Binomial

• # Successes in n Bern thelp

• Sum of indicator RVs (Indicators of Success),

X = X1 + X2 + ... + Xn where X;= \{ 0, otherwise}

X=X1+X2+...+Xn where xj=20, otherwise

X1, X2,..., Xn i.i.d (independent and idlah cally distributed).

Remark Bromid Hhm.
$$(x+y)^{N} = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}$$

= (x+y)(x+y) -.. (x+y)

(a+6) (c+a) = actad+ bc+bd

$$(x,y) = Z(x) \times y$$

$$(x+y) = Z(k) x^{2}y^{n}$$

$$\frac{\text{tx}}{\text{(sum of Binomial RV)}} \times \text{ABinom}(n,p) \qquad \text{Y N Binom}(m,p) \qquad \text{X,y independent,}$$

$$\frac{\text{distributed as}}{\text{distributed as}} \qquad \text{Hen} \qquad \text{X+Y N Binom}(n+m,p)$$
Alternative ways of seeing theis:
$$(\text{X}) \qquad \text{X} = \underbrace{\tilde{Z}}_{X_{2}} \times \underbrace{X}_{X_{2}} \qquad \text{Y} = \underbrace{\tilde{Z}}_{X_{2}} \times \underbrace{Y}_{X_{2}} = \underbrace{X}_{X_{2}} \times \underbrace{X}_{X_{2}} + \underbrace{\tilde{Z}}_{X_{2}} \times \underbrace{X}_{X_{2}} \times \underbrace{X}_{X_{2}} + \underbrace{X}_{X_{2}} \times \underbrace{X}_{X_$$

5 cads, find distribution of # aces.

$$P(X=1) = \frac{\binom{4}{k}\binom{48}{5-k}}{\binom{52}{5}}$$

$$/ k \in \{0,1,2,3,4\}$$

Draw a balls without replacement

Then X has a hypergeometric distribution $X \sim HGeom(u, b, n)$ $P(X=k) = \frac{\binom{w}{k}\binom{b}{h-k}}{\binom{u+b}{n}}, 0 \leq k \leq w, 0 \leq h-k \leq b. \quad Valid PMF?$

 $\mathcal{L} = \frac{\left(\begin{matrix} w \\ k \end{matrix}\right) \left(\begin{matrix} b \\ h-k \end{matrix}\right)}{\left(\begin{matrix} w+b \\ n \end{matrix}\right)} = 1$

by Vanderworde.

Ex balls in a banker. w white bulls 6 black balls

Dof. Integerhence of RV.

X and Y are undependent if

$$P(X \in X, Y \subseteq Y) = P(X \in X)P(Y \subseteq Y) \quad \text{for all } X, Y$$
In discrete case:
$$P(X = X, Y = Y) = P(X = X)P(Y = Y) \quad \text{for all } X, Y.$$

EX. Toss 2 lia.
$$Y \text{ is } \# \text{ 1st die}$$

$$Y \text{ is } \# \text{ 2nd die}$$

$$(X + Y) \quad \text{neependent of } (X - Y)$$

$$O = P(X + Y = 12, X - Y = 1) \neq P(X + Y = 12) P(X - Y = 1) = 36 \cdot 36$$

Ex1: X result of die 1 X + \(\xi_1, 2, 3, 4, 5, 6\)?
Y result of die Z Y \(\xi\) Negative Biromièl Examples Ex7: × same as before Y: indicator of Gellet lating near Indep., not id. distr. Election, Trump. Dependent and not id. distributed. one die, toss n times. Ex4: X: It Heads, Y= It tails Dependent and edentically distributed.

Repulsition idd.

iid

Lecture 5

Averges

Georetic distribution

$$CDE$$
.

EX: X ~ Binom(N=4, FO.5)

$$P(1 < X \leq 3) = P(X \leq 3) - P(X \leq 1) = F(3) - F(1)$$

$$P(X \le I) + P(I < X \le 3) = P(X \le 3)$$

$$\frac{1+2+3+4+5+8}{6}=3.5.$$

6 Gauss:

$$\frac{h}{2} \dot{h} = (h+1) \frac{h}{2}$$
 $\frac{1}{4}$

 $\mathbb{E} x^2 = \mathbb{E}(x^2) = \mathbb{E}(x^2)^2$

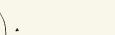
Notwhen: Ex = E(x)

$$\mathbb{E}(X) = \underbrace{2}_{2} \times P(X=x). \quad \text{for these } x \text{ with } P(X=x) > 0.$$

$$\mathbb{E}(x) = \frac{5}{8} + \frac{2}{8} + \frac{1}{8} = \frac{1}$$

2 x P(x=x) + 2y P(Y=y)

 $\mathbb{E}(x+y) = \mathbb{E}(x) + \mathbb{E}(y)$. $c \mathbb{E}(x) = \mathbb{E}(cx)$.



$$\underline{\mathsf{Ex}}$$
. $\mathsf{x} \sim \mathsf{Bern}(\mathsf{p})$

$$rac{(9)}{}$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(33)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5) P(153)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5)$$

$$= \frac{6}{5} \times (5) P(153) + \frac{6}{5} \times (5)$$

$$= \frac{6$$

Et.
$$X \sim Binom(n, p)$$
.

Dissimilt $E(\lambda) = \sum_{k=0}^{N} k P(X=k) = \sum_{k=0}^{N} k {N \choose k} P^k g^{n-k}$
 \vdots

Ii N Ben (p) LE [1,2,...,n]

X = I, + Iz + ..., + In.

 $\mathbb{E}(\mathbf{I}_i) = \mathbf{p}$

E(x)=hp

Easyway

Ex. hypergeonelnic destribution

$$E(X_1 + X_2 + \dots + X_5) = E(X_1) + E(X_2) + \dots + E(X_5) = 5 \cdot \frac{4}{52} = \frac{5}{13}$$

Geonatric distribution (p. 157-158)

Sequence of Bern(p) tralo, stop at first success.

X = # eg failures before 1st success. 069=1-p 61

P(X=h) = ghp

Uglid PMFZ $\frac{2}{2}g^{k}p = p \frac{2}{2}g^{k} = p \frac{1}{1-q} = 1$

E(x) = Zkghp

Story proof: C:= E(X). E(X) = 9

 $IE(x) = Q \cdot p + (1 + E(x)) q$

$$\frac{Thm}{r} = \left(\frac{r + r - 1}{r - 1} \right) P^{r} g^{r}$$

$$P(X=n) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} P g'$$

$$X = X_1 + X_2 + \dots + X_{\Gamma}$$

$$\mathbb{E}(X) = \mathbb{E}(X_1 + X_2 + \dots + X_r) = \mathbb{E}(X_r) + \mathbb{E}(X_2) + \dots + \mathbb{E}(X_r) = r + \frac{2}{p}.$$

Ex Putnam problem (ex.4.4.6)

1,2,3,--,N PC/nutation

42513

 $a_{1}, a_{2}, \ldots, a_{N}$

when n7,2 what is the expected number of local newine, all permulations h!

I; be indicator that there is local mix at position j.

I; be indicator $(E(I_i) = \frac{1}{3})$

 $E(\frac{2}{5}t_j) = 2 \cdot \frac{1}{5} + (\lambda - \lambda) \frac{1}{3} = \frac{\lambda + 1}{3}$

· Functions of 2U

· Vanarice · Paisson

· Continuous

· Unigorn.

Pros

g is a further, taking values in R. Suppre $\mathbb{E}(g(x))$. Is this $g(\mathbb{E}(x))^2$ 9 (X) Thm. 4.5.1. Lotus

Functions of RV.

If x is discrete. $g: R \Rightarrow R$, $\mathbb{E}(g(x)) = \underbrace{Lg(x)}_{x} P(g(x) = \underbrace{Lg(x)}_{x} P(x = x)$

2 g(X(s)) P(453)

 $= \underbrace{2}_{x} \underbrace{2}_{s:X(s)=x} g(X(s)) P(\{s\})$ such that

 $= \underbrace{\zeta}_{\chi} g(\chi) \underbrace{\zeta}_{\zeta:\chi(\zeta)=\chi} \underbrace{P(\zeta \leq 7)}_{=P(\chi = \chi)}$

Suppose VAR(X)=0. Then X is a constant. SD(X)= (VARCX)

VARIANCE IDENTITY (sec. 4.6)

M:= ECX

18 X and Y are independent, then VAR(X+Y) = VAR(X) + VAR(Y).

Facts about VARIANCE:

VAR(cx) = C2 VAR(x)

VAR(X) = IE((X-E(X))2)

For any RU X, $VAR(X) = E(X^2) - (IE(X))^2$

VAR(X+c) = VAR(X) for any constant = \(\begin{align*} \(\xeta \ext{X}^2 \) - \(\begin{align*} \xeta \ext{X} \ext{X} \) \\ \(\xeta \ex

 $\mathbb{E}((\mathbf{X}-\mathbf{\mu})^2) = \mathbb{E}(\mathbf{X}^2 - 2\mathbf{\mu}\mathbf{X} + \mathbf{\mu}^2) = \mathbb{E}(\mathbf{X}^2) - 2\mathbf{\mu}\mathbb{E}(\mathbf{X}) + \mathbf{\mu}^2$

PS: Suppose X=Y.

Ps: g(x)=x2, a RU

VAR(x+Y) = VAR(2x) =4 VAR(x) > 2 VAR(x)

$$VAR(I_{j}) = IE(I_{j}^{2}) - E(I_{j})^{2} = I_{j}^{2} = I_{j}^{2} = I_{j}^{2}$$

$$= P - P^{2} = P(I-P)$$

$$I_{j} \text{ are indep. Thus,}$$

$$VAR(X) = VAR(I_{j}) + VAR(I_{2}) + \cdots + VAR(I_{n}) = hp(I-P)$$

in exp.j.

I; is an indicator of success

Ex Binimal Variance (4.6.5)

 $X = T_1 + T_2 + \cdots + T_n$

X~ BIN(NIP)

X has a poisson dist. with parameter
$$\lambda$$
, \times

$$X$$
 has a poisson dist. with parameter λ , $X \sim Pois(\lambda)$, if the PMF is $P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$, $k=0,1,2$...

 $\frac{1}{|E(x)|} = e^{-\lambda} \underbrace{\frac{2}{k_{00}}}_{k_{00}} \underbrace{\frac{k_{0}}{h_{0}!}}_{k_{00}} = e^{-\lambda} \underbrace{\frac{2}{k_{00}}}_{k_{00}} \underbrace{\frac{k_{00}}{h_{00}!}}_{k_{00}} = \lambda e^{-\lambda} \underbrace{\frac{2}{k_{00}}}_{k_{00}} \underbrace{\frac{\lambda^{k_{00}}}{(k_{00})!}}_{k_{00}} = \lambda.$

Expediention 4.7.2

VAR(X)=>

pinon dist. with parameter),
$$\times \sim f$$

Poisson paradigm 4.7

Applications when we want to count something, e.g. successes, when both

- · Large number of trads

· success in each trial is small $X = Z I(A_i)$

then X is approx Pois(A), $\lambda = \frac{2}{j} P_j$

Thm 483. $\times nBin(n,p)$, $n \rightarrow \infty$, $p \rightarrow 0$, $\lambda = np$ remain fixed. Then the PMF of X converges to Pois(1). Ex Birth triple mætch. h people. probability that 3 people (or more) have the same birthday Find the approximate (n) triplets. I ijle utjek is an indicetar that usiand le have the Same birthday $\begin{array}{c} = \times \\ = \times \\ I_{123} \text{ and } I_{124} \text{ are dep.} \end{array} \\ \begin{array}{c} \text{most triplets' are inl. cpenhent} \\ = \left(\frac{h}{3}\right) \frac{1}{365^2}. \end{array} \\ \times \text{ \times approx $Pois(\lambda)$, $\lambda=\left(\frac{h}{3}\right) \frac{1}{365^2}. = 1-c^{-\lambda} \frac{\lambda^{\circ}}{o!} = 1-e^{-\lambda}. \end{array}$